Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 93(9): 5538-5543, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363694

ABSTRACT

In the current coronavirus disease 2019 (COVID-19) pandemic there is a mass screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) happening around the world due to the extensive spread of the infections. There is a high demand for rapid diagnostic tests to expedite the identification of cases and to facilitate early isolation and control spread. Hence this study evaluates six different rapid nucleic acid detection assays that are commercially available for SARS-CoV-2 virus detection. Nasopharyngeal samples were collected from 4981 participants and were tested for the SARS-CoV-2 virus by the gold standard real-time reverse-transcription polymerase chain reaction (RT-PCR) method and with one of these six rapid methods of detection. Evaluation of the rapid nucleic acid detection assays was done by comparing the results of these rapid methods with the gold standard RT-qPCR results for SARS-COV-2 detection. AQ-TOP had the highest sensitivity (98%) and a strong kappa value of 0.943 followed by Genechecker and Abbot ID NOW. The POCKIT (ii RT-PCR) assay had the highest test accuracy of 99.29% followed by Genechecker and Cobas Liat. Atila iAMP showed the highest percentage of invalid reports (35.5%) followed by AQ-TOP with 6% and POCKIT with 3.7% of invalid reports. Genechecker system, Abbott ID NOW, and Cobas Liat were found to have the best performance and agreement when compared with the standard RT-PCR for COVID-19 detection. With further research, these rapid tests have the potential to be employed in large-scale screening of COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/standards , Humans , Nasopharynx/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , United Arab Emirates
2.
Biomed Res Int ; 2021: 5568350, 2021.
Article in English | MEDLINE | ID: covidwho-1305516

ABSTRACT

In this COVID-19 pandemic, there is a dire need for cost-effective and less time-consuming alternatives for SARS-CoV-2 testing. The RNA extraction-free method for detecting SARS-CoV-2 in saliva is a promising option. This study found that it has high sensitivity (85.34%), specificity (95.04%), and was comparable to the gold standard nasopharyngeal swab (NPS) sample tests. The method showed good agreement between salivary and NPS samples, with a kappa coefficient of 0.797. However, there are variations in the sensitivity and specificity based on the RT-PCR kit used. The Thermo Fisher Applied Biosystems showed high sensitivity, positive predictive value (PPV), and negative predictive value (NPV) but also showed a higher percentage of invalid reports. On the other hand, the BGI kit showed high specificity, better agreement (kappa coefficient) between the results of saliva and NPS samples, and higher correlation between the Ct values of saliva and NPS samples. Thus, the RNA extraction-free method for salivary sample serves as an effective alternative screening method for COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Saliva/virology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Cost-Benefit Analysis , Diagnostic Tests, Routine , Humans , Mass Screening/methods , Nasopharynx/virology , Pandemics , Polymerase Chain Reaction/methods , Predictive Value of Tests , RNA, Viral/genetics , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/methods
3.
BMC Infect Dis ; 21(1): 360, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1190060

ABSTRACT

BACKGROUND: The current pandemic of the SARS-CoV-2 virus, widely known as COVID-19, has affected millions of people around the world. The World Health Organization (WHO) has recommended vigorous testing to differentiate SARS-CoV-2 from other respiratory infections to aid in guiding appropriate care and management. Situations like this have demanded robust testing strategies and pooled testing of samples for SARS-CoV-2 virus has provided the solution to mass screening of people for COVID-19. A pooled testing strategy can be very effective in testing when resources are limited, yet it comes with its own limitations. These benefits and limitations need critical consideration when it comes to testing highly infectious diseases like COVID-19. METHODS: This study evaluated the pooled testing of nasopharyngeal swabs for SARS-COV-2 by comparing the sensitivity of individual sample testing with 4-and 8-pool sample testing. Median cycle threshold (Ct) values were compared, and the precision of pooled testing was assessed through an inter- and intra-assay of pooled samples. Coefficient of variance was calculated for inter- and intra-assay variability. RESULTS: The sensitivity becomes considerably lower when the samples are pooled. There is a high percentage of false negative reports with larger sample pool size and when the patient viral load is low or weak positive samples. High variability was seen in the intra- and inter-assay, especially among weak positive samples and when more number of samples are pooled together. CONCLUSION: As COVID - 19 infection numbers and need for testing remain high, we must meticulously evaluate the testing strategy for each country depending on its testing capacity, infrastructure, economic strength, and need to determine the optimal balance on the cost-effective strategy of resource saving and risk/ cost of missing positive patients.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Mass Screening/methods , Clinical Laboratory Techniques , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL